Trimethylsilylcyanid als Umpolungsreagens, XII¹⁾

Intramolekulare Diels-Alder-Reaktion über umgepolte Dienale

Klaus Fischer²⁾ und Siegfried Hünig*

Institut für Organische Chemie der Universität Würzburg, Am Hubland, D-8700 Würzburg

Eingegangen am 26. Februar 1986

Aus den Dienalen 1 und 2 sind durch Umpolung mit Trimethyl- oder Triethylsilylcyanid und Reaktion mit den olefinischen Alkylierungsmitteln 7–10 die Produkte 11–16 glatt zugänglich. Diese enthalten eine Dien- und eine Dienophileinheit in der Weise, daß durch Erhitzen auf 180°C meist quantitative intramolekulare Diels-Alder-Reaktion eintritt. Da sich die Cycloaddukte (24, 26, 28) unter sehr milden Bedingungen entschützen lassen, sind erstmals Hexahydro-indenone (22, 25) und -naphthalinone (27, 29) ohne Isomerisierung der Doppelbindung zugänglich. Intramolekulare Cycloadditionen mit ungeschützter Carbonylfunktion im Edukt (19, 21) führen stets zu Hexahydronaphthalinonen (33) ausbleibt. Verwandte Literaturbeispiele zeigen die gleichen Nachteile.

Trimethylsilyl Cyanide - A Reagent for Umpolung, XII¹⁾

Intramolecular Diels-Alder Reaction of Dienals via Umpolung

Umpolung of dienals 1 and 2 with trimethylsilyl- or triethylsilyl cyanide and reaction with olefinic alkylating reagents 7-10 furnishes products 11-16 in high yields. On heating to 180°C these products, containing a diene and a dienophilic moiety, undergo in most cases quantitative intramolecular Diels-Alder reactions. Since the cycloadducts can be deprotected under very mild conditions, hexahydro-indenones (22, 25) and -naphthalinones (27, 29) can be synthesized for the first time avoiding isomerisation of the double bond. Intramolecular cycloadditions without protected carbonyl groups in the precursor (19, 21) yield hexahydro-naphthalinones (33) fails. Related examples described in the literature suffer from the same drawback.

Die von Alder 1953 konzipierte intramolekulare Variante der Diels-Alder-Reaktion³⁾ hat in den letzten 15 Jahren zum regio- und stereoselektiven Aufbau von Bicyclen erhebliche Bedeutung erlangt, zumal sich auf diese Weise ein definiert plaziertes Substituentenmuster erzeugen läßt⁴⁾. Dabei erfolgt bei einer Separierung von Dien und Dienophil durch bis zu zehn Kettenglieder im Typ A und B die Cycloaddition regioselektiv unter 1,2-Verknüpfung zu C, während beim Edukttyp D die interessante 1,3-Verknüpfung zu E⁵⁾ und ab sechs Brückenglieder sogar 1,4-Verknüpfung zu F möglich ist^{5c}].

Wir beschränken uns hier auf den sehr häufig eingesetzten Typ der trans-Diene A mit drei und vier Brückengliedern, die eindeutig zu C reagieren. Allerdings hängt das cis/transVerhältnis an den Verknüpfungsstellen der entstehenden 6/5- und 6/6-Bicyclen in sehr komplexer Weise von elektronischen, sterischen und konformativen Einflüssen in A ab, außerdem von Katalysatoren⁴⁸. Selbst eine systematische Untersuchung an den un- und monosubstituierten Trienen A hat nicht zu Erkenntnissen mit Voraussagekraft geführt⁶.

Es schien deshalb sinnvoll, die schon bewährte Alkylierung mit Trimethylsilylcyanid umgepolter Dienale⁷⁾ zum Aufbau des Typs A zu nutzen, um so Bicyclen C mit neuem Substituentenmuster zu synthetisieren und das *cis/trans*-Verhältnis der Ringverknüpfung im Vergleich zu dem ähnlicher Systeme⁴⁾ zu untersuchen.

1. Synthese der Dien-Dienophil-Edukte

1.1. O-Silylierte Cyanhydrine 4-6

Entsprechend den früheren Erfahrungen⁷ addieren sich Trimethyl- (3a) und Triethylsilylcyanid (3b) unter Zinkiodid- oder Tetrabutylammonium-iodid-Katalyse⁸⁾ glatt an die Dienale 1 und 2 zu 4–6. Dabei bleibt erwartungsgemäß das E/Z-Verhältnis in bezug auf die endständige Methylgruppe (2a 90:10, technisches Produkt⁹; 2b 98:2, gereinigt) in 6a und 6b voll erhalten.

1.2. Nucleophile Acylierung zu 11-16

Die durch Lithium-diisopropylamid (LDA) leicht erzeugbaren ambidenten Anionen $4_A - 6_A$ können Elektrophile grundsätzlich in α -, γ - und ϵ -Stellung aufnehmen. Hier bestätigt sich sowohl mit den Alkylbromiden 7 und 8 als auch mit den Alkyltosylaten 9 und 10 die frühere Erfahrung^{1.7)} einer reinen α -Alkylierung (>95% laut ¹H-NMR des Rohproduktes). Dabei werden gute Ausbeuten an 11-16 erzielt, wenn man der nicht sehr hohen Reaktivität von 7-10 durch lange Reaktionszeiten (12 h, -40°C) Rechnung trägt (Tab. 1). Allerdings kann dadurch als Konkurrenzreaktion eine schon bei den von α,β -ungesättigten Aldehyden abgeleiteten Anionen beobachtete *O,C*-Silylwanderung¹⁰⁾ auftreten. Diese wird hier,

R	ος 1 - ε - γ α 4 - 6 Α	SiR3 Li [⊕] `CN	•	R ³ -X 7 - 10		OSiR ² 	
	∽ _{Br} 7	\sim	Br	8	OTos 9	\sim	- ^{OTos} 10
	R ³ -X		R ¹	R ²	R ³	Roh- ausb. (%)	Rein- ausb. (%)
4 _A 5 _A 4 _A 5 _A 6a _A 6b _A 6b _A	7 7 8 8 9 7 10 8	11 12 13 14 15 15 16 16 16 b	H H H Me Me Me	Me Et Et Me Me Me	$\begin{array}{l} H_2C = CHCH_2CH_2 \\ H_2C = CHCH_2CH_2 \\ H_2C = CH[CH_2]_3 \\ H_2C = CH[CH_2]_3 \\ H_2C = CHCH_2CH_2 \\ H_2C = CHCH_2CH_2 \\ H_2C = CHCH_2CH_2 \\ H_2C = CHC[CH_2]_3 \\ H_2C = CH[CH_2]_3 \end{array}$	87 ^{a)} 90°) 100 ^{d)} 87°) 100 95 100 96	55 (3 ^{b)}) 62 63 (8 ^{b)}) 61 74 ^e ! 84 ^e ! 74 ^e ! 84 ^e !

Tab. 1. Nucleophile Acylierung der Anionen $4_A - 6_A$ mit den Elektrophilen 7-10 zu den O-Silylcyanhydrinen 11-16

^{a)} 11:18 = 83:17. b Isoliertes Amid 18. $^{c)}$ 17 5% (¹H-NMR). $^{d)}$ 13:18 = 85:15. $^{e)}$ Verhältnis (5*E*):(5*Z*) aus 6a bzw. 6b bleibt voll erhalten.

aber nur beim Anion 4, beobachtet, wobei sich die Silylgruppe als 17_A bzw. nach Aufarbeitung zu 18 nur in ε -Stellung befindet. Es gilt also auch hier die früher schon für umgepolte α,β -ungesättigte Aldehyde gefundene Regel: Eine Trimethylsilylgruppe wandert rascher als eine Triethylsilylgruppe, und zwar besonders leicht zu einer unsubstituierten ε -Stellung des ambidenten Anions¹⁰.

Es ist bemerkenswert, daß in den Produkten 15a/15b und 16a/16b das aus den Edukten 6a und 6b übernommene E:Z-Verhältnis voll erhalten bleibt (¹H-NMR

und Kapillar-GC). Dieses bestätigt die bereits bei den niederen Vinylogen gefundene Konfigurationsstabilität der Anionen 6_A^{1} . Auch bei der milden Freisetzung der Ketone 19–21 aus 14, 15b und 16b auf bekanntem Wege^{1,7,10,11} ändert sich die Konfiguration nicht.

2. Intramolekulare Diels-Alder-Reaktionen der O-Silylcyanhydrine 11 – 16

2.1. NMR-Rohrversuche

Nach dem Schema $G \rightarrow H$ haben die geprüften Edukte 11, 13, 15a, 15b, 16a und 16b in Deuteriobenzol bei 180°C nach 6 Stunden zu ca. 90% und nach 24 Stunden vollständig mit nahezu quantitativen Ausbeuten an Cycloaddukt reagiert. Dabei sind im Falle von 11 und 13 (R = H) im ¹H-NMR-Spektrum keine Dien-Signale, wohl aber noch solche des endständigen Olefins vorhanden, ein Zeichen, daß ein Teil des Diens durch intermolekulare Reaktionen (Polymerisationen?) verbraucht wird. Im Gegensatz zu 15b und 16b (R = Me) bleibt die Cycloaddition von 15a und 16a bei ca. 90% stehen. Nur die letzteren enthalten ca. 10% an (5Z)-Isomeren, die offenbar unter diesen Bedingungen keine Cycloaddition eingehen. Die präparativen Versuche wurden nur mit 15b und 16b durchgeführt.

2.2. [4 + 2]-Cycloaddition zu den Hexahydro-indenonen 22 und 25

Das in Analogie zum ¹H-NMR-Versuch in Benzol umgesetzte 12 wurde direkt zu den Ketonen *cis*-22 und *trans*-22 aufgearbeitet, die im Verhältnis 64:36 anfallen. Die milde Methode zur Entfernung der Umpolungsgruppe vermeidet dabei die Isomerisierung der Doppelbindung zu 23 vollständig. Dieses entsteht zu ca. 5% erst beim Reinigen der Rohketone 22 über Kieselgel¹².

Ganz entsprechend erhält man aus 15b in quantitativer Rohausbeute die Cycloaddukte *cis*-24a/b (Diastereomerenverhältnis 71:29) und *trans*-24a/b (Diastereomerenverhältnis 67:33) in nahezu gleichen Teilen. Aus diesen lassen sich die

Ketone cis-25 und trans-25 freisetzen, ohne daß sich das Isomerenverhältnis ändert. Neben diesen sind im ¹H-NMR-Spektrum (400 MHz) noch sehr schwache Signale des offenkettigen Ketons (6E),(8Z)-20 nachweisbar, die offenbar dem geringen Anteil an nicht cycloaddierendem (5Z)-15b (ca. 2%) entstammen. Sowohl 22 als auch 25 sind bisher unbekannt.

2.3. [4 + 2]-Cycloaddition zu den Hexahydro-naphthalinonen 27 und 29

Die unterschiedlichen Silylgruppen in 13 und 14 haben auf die intramolekulare Diels-Alder-Reaktion keinen Einfluß. In beiden Fällen geht ein Teil durch anderweitige Reaktionen des Dienteils verloren. Immerhin ließ sich das *cis/trans*-Gemisch (64:36) der diastereomeren Cycloaddukte 26a/b mit 86% Ausbeute isolieren. Bei der gewählten Abspaltungsmethode für die Umpolungsgruppe kommt es allerdings zu einer Epimerisierung des *cis*-Ketons, so daß nur *trans*-27 isoliert wird.

^{a)} Vor, ^{b)} nach der Chromatographie des Gemischs an Kieselgel.

Chem. Ber. 119 (1986)

Ohne Isolierung der geschützten Cyanhydrine kommt man in gleicher Ausbeute zum selben Ergebnis, wie die Reaktion $14 \rightarrow trans-27$ zeigt.

27 ist unseres Wissens bisher nicht beschrieben¹³⁾. Die gegenüber 13 und 14 zusätzliche Methylgruppe am Dienteil des Eduktes 16b vermeidet bei der Cycloaddition-Nebenreaktionen, so daß bereits im Rohprodukt das *cis/trans*-Verhältnis an den diastereomeren Cycloaddukten 28 a/b zu 61:39 bestimmt werden kann. Bei der Überführung von 28 in die zugehörigen Ketone 29 wandelt sich jedoch ein Teil von *cis*-29 in *epi*-29 um, das ebenfalls über *trans*-verknüpfte Ringe verfügt. Durch Chromatographie des Rohgemisches an Kieselgel geht *cis*-29 nahezu vollständig in *epi*-29 über. Es ist bemerkenswert, daß in Analogie zur Isomerisierung *cis*-26 \rightarrow *trans*-27, aber im Gegensatz zu 22 \rightarrow 23, unter den Aufarbeitungsbedingungen 29 nicht zum Keton 30 mit konjugierter Doppelbindung isomerisiert, obwohl auch hier 30 das thermodynamisch stabilste Produkt ist. 30 entsteht jedoch erst nach längerer Zeit aus *epi*-29 und *trans*-29 unter Säurekatalyse.

Dieses unerwartete Verhalten wurde an dem verwandten Beispiel des Ketons trans-31 schon beobachtet¹⁴.

Das durch intramolekulare Diels-Alder-Reaktion erhaltene *cis/trans*-Gemisch von 31 wandelt sich beim Chromatographieren an Kieselgel in das hier stabilere *cis*-31 um, das erst unter schärferen Bedingungen zum konjugierten Enon 32 isomerisiert.

3. Intramolekulare Diels-Alder-Reaktionen der ungesättigten Ketone 19-21

Setzt man nicht, wie oben besprochen, die O-Silylcyanhydrine, sondern die entsprechenden Ketone in die intramolekulare Cycloaddition ein, so muß wegen der desaktivierenden Wirkung der Carbonylgruppe auf das Dien bei einer Diels-

Chem. Ber. 119 (1986)

Alder-Reaktion mit normalem Elektronenbedarf mit schärferen Reaktionsbedingungen gerechnet werden. Im Falle von Keton 20 entsteht dabei nach der erforderlichen Reaktionszeit von 80 Stunden bei 180°C ein Gemisch aus etwa 20 Verbindungen, dessen komplexes ¹H-NMR-Spektrum geringe Mengen an dem Cycloaddukt 33 vermuten lassen. In 33 ist bereits die Doppelbindung in die konjugierte Position gewandert.

Auch 19 erfordert längere Reaktionsdauer und liefert ebenfalls nur das konjugierte Cycloaddukt 34 in mäßiger Ausbeute. Der hohe Anteil von Dienophilsignalen im Rohprodukt bei Abwesenheit der Diensignale resultiert aus starken Nebenreaktionen (Polymerisation). Man sieht jedoch, daß im Gegensatz zum 6/5-Ringsystem prinzipiell das 6/6-Ringsystem zugänglich ist. Dabei erhöht die zusätzliche Methylgruppe in 21 erwartungsgemäß (weniger intermolekulare Nebenreaktionen) die Ausbeute an Cycloaddukt 30, das aber wiederum eine konjugierte Doppelbindung enthält.

Es werden also nicht, wie bei der Synthese über 28, die Ketone 29 gefaßt, sondern nur die Isomerisierungsprodukte 30 a/b. Das Auftreten beider Diastereomeren zeigt an, daß *cis*- und *trans*-Verknüpfung der beiden Sechsringe, wie beim Einsatz von 16b erfolgen, allerdings in einem anderen Verhältnis. Die spektroskopischen Daten erlauben keine eindeutige Zuordnung. Nach vergleichbaren Cycloadditionen zu urteilen, sollte dem Überschußisomeren die *trans*-Konfiguration zukommen^{14,15)}.

4. Konfigurationsbestimmung der Cycloaddukte

Nach Untersuchungen an über 90 verschiedenartig substituierten, bicyclischen 5/6- und 6/6-Ringsystemen unterscheiden sich die *trans*- von den *cis*-Isomeren durch eine im ¹³C-NMR-Spektrum um 5-12 ppm bei tieferem Feld liegende Resonanz der C-Atome in den Anellierungspositionen¹⁶. Dabei ist lediglich zu berücksichtigen, daß durch das zusätzliche Chiralitätszentrum der O-Silylcyan-hydrine 24, 26 und 28 (im Vergleich zu den Ketonen 22, 25, 27 und 29) *cis*- und *trans*-Isomere als Diastereomerenpaare vorliegen, so daß jeweils mit dem vierfachen Signalsatz gerechnet werden muß. Unter dem Einfluß der beiden benachbarten polaren Substituenten absorbieren die Brücken-C-Atome C-7a (bei 26 und 28 C-8a) bei deutlich tieferem Feld als alle anderen sp³-C-Atome, so daß eine eindeutige Zuordnung sowie eine Bestimmung des *cis/trans*-Verhältnisses über die Intensitäten möglich ist. Als Beispiel sind die ¹³C-Verschiebungen bei *cis*- und *trans*-24 eingetragen.

In entsprechender Weise läßt sich die Geometrie der Ringverknüpfung bei den Ketonen 22, 25, 27 und 29 festlegen. Zusätzlich ist die *trans*-diaxiale Anordnung

der Brückenprotonen bei *epi-29* und *trans-29* an der großen Kopplungskonstante¹⁷⁾ $J_{8a,4a}$ von 11.7 bzw. 11.1 Hz zu erkennen.

Schließlich findet sich, in Übereinstimmung mit Literaturdaten¹⁸, bei den *cis*-Ketonen **22** und **25** die C=C-Streckschwingung oberhalb von 1650 cm⁻¹, nämlich bei 1650 – 1655 cm⁻¹, während sie bei den *trans*-Isomeren von **22** und **25** unterhalb dieser Grenze liegt (1635 – 1640 cm⁻¹).

5. Diskussion der Ergebnisse

Die vorgestellten intramolekularen Cycloadditionen zu hydrierten Indan- und Naphthalinsystemen erweisen sich im Vergleich zu literaturbekannten Synthesen⁴) durchaus als konkurrenzfähig. Das gilt sowohl für die Zugänglichkeit der Edukte und die Gesamtausbeute als auch für das *cis/trans*-Verhältnis der Ringverknüpfung. Da das geringe Übergewicht der *cis*-Verknüpfung einer Differenz der Aktivierungsenergie von <1 kcal/mol entspricht, führt eine Diskussion von Substituenteneinflüssen leicht zur Überinterpretation¹⁹, zumal sich bisher^{4g.6)} kein einheitliches Bild für die bestimmenden Faktoren entwerfen läßt²⁰.

Auffällig ist das Ausbleiben der Cycloaddition, wenn der Dienteil, wie bei (5Z)-15b und (5Z)-16b, eine Z-substituierte Doppelbindung aufweist. Am Beispiel 35 wurde die gleiche Erfahrung gemacht²¹⁾.

Die Z-Konfiguration vermindert nicht nur die Population der cisoiden Anordnung im Übergangszustand²², sondern erlaubt statt der idealen *s-cis*- lediglich eine *s-gauche*-Konformation, wodurch die HOMO_{Dien}-Energie abgesenkt, d. h. die Aktivierungsenergie für den Ringschluß erhöht wird^{22,23}.

Von erheblicher präparativer Konsequenz ist der Befund, daß eine Carbonylgruppe in Konjugation zum Dienteil (20) die Cycloaddition zum Hydroindangerüst unterbindet. Dieses Verhalten wurde bereits am nahe verwandten Keton 36 beobachtet²⁴). Es ließ sich, wie Keton 37 zeigt, auch nicht durch Aktivierung des Dienophilteils überwinden¹⁸). Hingegen vollzieht sich, nach Reduktion der Carbonylgruppe, auch ohne Aktivierung, z. B. in 36, die Bildung der Hydroindane *cis*und *trans*-39 aus 38 relativ glatt²⁴).

Das Versagen der Hydroindanonbildung wird von einigen Autoren darauf zurückgeführt, daß zur genügenden Annäherung der [4 + 2]-Addenden zur Bildung eines 6/5-Bicyclus die bevorzugte coplanare Anordnung von Carbonyl- und 1,3-Dienfunktion aufgegeben werden muß^{4g,i}). Für eine solche Deutung spricht, daß sich die Dienonfunktion für die intramolekulare Diels-Alder-Reaktion zu Hydronaphthalinonen grundsätzlich eignet. Jedoch zeigen die Beispiele **19** \rightarrow **34** und **21** \rightarrow **30**, daß auch hier die Wanderung der Doppelbindung in die konjugierte Position nicht zu unterbinden ist. Dies gilt selbst bei zusätzlicher Aktivierung des Dienophils wie in **40**, das bei vollständigem Umsatz nur die konjugierten Ketone **41a** und **41b** liefert^{14,15}. Erst die Aufhebung der Carbonylfunktion durch Acetalisierung^{14,15,25}, Umwandlung in eine geschützte OH-Funktion^{5f,14,15,25,26)} oder ihre totale Entfernung^{14,15,25} belassen die Doppelbindung im Produkt in der erwarteten Position. Daß die *O*-Silylcyanhydrinfunktion die gleichen Dienste leistet, ist aus den vorgestellten Reaktionen von **11**-**16** klar abzulesen.

Aus diesen Zusammenhängen wird deutlich, daß es vorteilhaft ist, die Edukte zum Aufbau von Hydroindanonen (z. B. 22 und 25) und Hydronaphthalinonen (z. B. 29) durch eine Umpolungsreaktion zu synthetisieren, da dann die für die Cycloaddition ohnehin erforderliche Carbonylschutzgruppe bereits vorliegt. Eine solche Schutzgruppe muß lediglich ohne Isomerisierung der Doppelbindung entfernbar sein. Alle diese Bedingungen werden mit Trimethylsilylcyanid als Umpolungsreagens nahezu ideal erfüllt, zumal die erforderlichen Edukte (hier 11-16) gut zugänglich sind.

Wir danken den Firmen Hoechst AG, Frankfurt/Main, und Wacker-Chemie, Burghausen, für die Überlassung von Chemikalien. Außerdem danken wir dem Fonds der Chemischen Industrie sowie der BASF Aktiengesellschaft, Ludwigshafen, für die Förderung dieser Untersuchung.

Experimenteller Teil

Geräte, Lösungsmittel usw. vgl. Lit.1).

Synthese der O-Silylcyanhydrine **4–6**: Zu 1.1 Äquivv. Trimethyl- (**3a**) oder Triethylsilylcyanid (**3b**)¹¹ und einer Mikrospatelspitze A) von wasserfreiem Zinkiodid⁷ oder B) Tetrabutylammoniumiodid⁸ tropft man unter trockenem N₂ 1.0 Äquiv. frisch destillierten Aldehyd (**1**, **2a**, **b**) so, daß die Innentemp. bei A) 60–70°C, bei B) 30°C nicht überschreitet. Man rührt noch 2–3 h bei Raumtemp. nach und destilliert über eine 15-cm-Vigreuxkolonne.

(3E)-2-(*Trimethylsilyloxy*)-3,5-*hexadiennitril* (4): 1.93 g (19.4 mmol) **3a**, 1.45 g (17.7 mmol) 2,4-Pentadienal (1)²⁷⁾, A): 2.62 g (82%) 4 vom Sdp. 44–46°C/10⁻² Torr. – IR (Film):

3090, 3040 (=CH); 1650, 1600 (C=C) cm⁻¹. $^{-1}$ H-NMR (CDCl₃): $\delta = 0.28$ (s, 9 H, OSiMe₃); 5.01 (d, 1 H, $J_{2,3} = 6.00$ Hz, 2-H); 5.20 – 5.48 (m, 2 H, 6-H_a, 6-H_b); 5.67 (mc, 1 H, $J_{3,4} = 15.0$ Hz, 3-H); 6.03 – 6.67 (m, 2 H, $J_{4,5} = J_{5,6b} = 10.0$, $J_{5,6a} = 16.5$ Hz, 4,5-H).

C₃H₁₅NOSi (181.3) Ber. C 59.62 H 8.34 N 7.72 Gef. C 59.27 H 8.32 N 7.83

(3E)-2-(Triethylsilyloxy)-3,5-hexadiennitril (5): 13.0 g (92.0 mmol) **3b**, 6.90 g (84.0 mmol) 2,4-Pentadienal (1)²⁷, B): 15.9 g (85%) **5** vom Sdp. 95 °C/0.03 Torr. – IR (Film): 3090, 3040 (=CH); 1645, 1600 (C=C) cm⁻¹. – ¹H-NMR (400 MHz/CDCl₃): δ = 0.68 (mc, 2H, OSiCH₂); 0.97 (mc, 3H, CH₂CH₃); 4.99 (dd, 1H, J_{2,3} = 6.00, J_{2,4} = 1.35 Hz, 2-H); 5.25 (mc, 1H, 6-H_b); 5.35 (mc, 1H, J_{6a,6b} = 1.50 Hz, 6-H_a); 5.69 (mc, 1H, J_{3,4} = 14.85, J_{3,5} = 0.60, J_{3,6a} = 1.20 Hz, 3-H); 6.34 (dt, 1H, J_{5,6a} = 16.65, J_{5,6b} = 10.05 Hz, 5-H); 6.42 (mc, 1H, J_{4,5} = 10.35, J_{4,6a} = 0.60, J_{4,6b} = 0.60 Hz, 4-H).

C12H21NOSi (223.4) Ber. C 64.52 H 9.47 N 6.27 Gef. C 63.77 H 9.39 N 6.27

(3E,5E)-2-(Trimethylsilyloxy)-3,5-heptadiennitril (6a, 6b): 22.7 g (229 mmol) 3a, 20.0 g (208 mmol) 2,4-Hexadienal (2a oder 2b)²⁸ (Sdp. 64 °C/20 Torr), B): 38.5 g (95%) 6a oder 6b vom Sdp. 55 °C/5 · 10⁻² Torr. – IR (Film): 3020 (=CH); 1655 (C=C) cm⁻¹. – ¹H-NMR (400 MHz/CDCl₃): δ = 0.21 (s, OSiMe₃); 1.76 (dd, 1H, 7-H); 4.94 (d, 1H, J_{2,3} = 6.25 Hz, 2-H); 5.54 (dddd, 1H, J_{3,4} = 15.30, J_{3,5} = 0.60, J_{3,6} = 1.10 Hz, 3-H); 5.84 (dq, 1H, J_{6,7} = 6.75 Hz, 6-H); 6.37 (mc, 1H, J_{4,5} = 10.40, J_{4,6} = 0.45, J_{4,7} = 0.50 Hz, 4-H); 6.64 (mc, 1H, J_{5,6} = 15.15, J_{5,7} = 1.50 Hz, 5-H). Vom Unterschußisomeren 6b zeigen sich Signale bei 5.00. (d, 1H, J_{2,3} = 6.3 Hz, 2-H), 6.74 (dd, 1H, J_{3,4} = 15.0, J_{4,5} = 11.00 Hz, 4-H).

mmol LDA	Aldel g (m	nyd mol)	R-X,g (mm	.01)	Prod.	Roh-	Rein-		Sdp.	
in ml THF	in ml	THF	in ml T	HF		Aust).g(%)		°C/T	orr
14.0/ 8	4 :2.32	(12.8)/3	7 :1.89	(14.0)/3	11	2.50 (87)	•) 1.65	(55)°)	50/3	10-2
11.0/10	5 :2.23	(10.0)/5	7 :1.49	(11.0)/5	12	2.40 (90)	, ^{b)} 1.71	(62)	70/1	10~2
11.0/ 8	4:1.81	(10.0)/3	8 :1.64	(11.0)/3	13	2.38 (100))*) 1.56	(63) ^{c)}	80/4	10-2
21.0/20	5 :4.30	(19.2)/8	8 :3.13	(21.0)/8	14	4.64 (87	') ^{b)} 3.40	(61)	95/2	10-2
83.0/25	6a:5.86	(30.0)/10	9 ³⁰⁾ :7.15	(27.0)/10	15a	7.15(>10)) 4.97	(74) ^{d)}	60/2	10-2
33.0/25	6 Ъ:5.86	(30.0)/10	7 :4.45	(33.0)/1) 15ъ	7.10 (95	6.30	(84)°)	60/2	10-2
33.0/25	6a:5.86	(30.0)/10	1031):6.49	(27.0)/1	0 16a	7.30(>10)) 5.24	(74) ^{d)}	65/2	10 ⁻²
33.0/25	6b:5.86	(30.0)/10	8 :4.92	(33.0)/1	16ъ	7.56 (96)	6.67	(84)°)	65/2	10-2

Tab. 2. Experimentelle Daten zur Synthese von 11-16

a) Enthält laut ¹H-NMR (60 Mz, CDCl₃) 16% Amid 18, Integration bei 2.90 ppm (d), 2H, $(CH_2CONH_2).-$ b) Das 18 entsprechende Säureamid ist mit <5% im ¹H-NMR-Spektrum sovie im IR-Spektrum (Film): 3460, 3370 (-NH), 1690 cm⁻¹ (-CONH₂) nachweisbar.~ c) Amid 18 neben 11 mit 3%, neben 13 mit 8% isoliert. Sublimiert bei 60 °C/10⁻² Torr. Schmp. 62-63 °C.-d) Enthält laut ¹H-NMR und GC 10% des s(Z)-Isomeren.- e) Wie d), jedoch ca. 2% (5Z)-Isomeres.

Alkylierung der aus 4-6 erzeugten Anionen zu 11-16: Unter trockenem Stickstoff werden bei -78 °C 1.1 Äquivv. Diisopropylamin in THF mit 1.12 Äquivv. *n*-Butyllithium in Hexan versetzt. Nach 15 min tropft man 1.0 Äquiv. der Aldehyde 4, 5 oder 6 in THF langsam zu. Die entstandene orangerote Lösung oder gelbe Suspension wird nach 30-120 min bei -78 °C mit 1.1 Äquivv. R-Br bzw. R-OTos (bessere Aufarbeitung) in THF versetzt und 12 h bei -40 °C nachgerührt. Nach Erwärmen auf Raumtemp. setzt man gesätt. wäßrige NH_4Cl -Lösung zu (10 ml pro 10 mmol Ansatz), schüttelt mit 3×10 ml Petrolether aus, wäscht die organische Phase neutral und trocknet mit MgSO₄. Nach Abziehen des Solvens wird das Rohprodukt im Kugelrohrofen vakuumdestilliert. Etwa entstandenes Säureamid **18** kann aus der gekühlten Pentanlösung des Rohproduktes ausgeschieden und durch Sublimation gereinigt werden. Bedingungen in Tab. 2.

Freisetzung der Ketone 19–21: Man läßt die Silylcyanhydrine in der in Tab. 3 angegebenen Weise mit Triethylamin-tris(hydrofluorid)¹¹⁾ reagieren, trennt nach Zusatz von 10 ml Wasser und 30 ml Ether die organische Phase ab und schüttelt mit 2×5 ml 1 N NaOH

Cyan- hydrin	g (mmol) /ml THF	g (mmol) NEt3°3HF /ml THF	min bei 25 °C	Keton	Sdp. °C/Torr	Ausbeute g (%)
14	0.60 (2.06)/ 3	0.33 (2.06)/3	180	19	65/5 10-1	0.25 (81)•)
15b	3.00 (12.0)/10	1.93 (12.0)/10	30	20	70/5 10 ⁻²	1.57 (87)
16b	3.95 (15.0)/15	2.42 (15.0)/15	30	21	75/5 10 ⁻²	2.21 (90)

Tab. 3. Bedingungen für die Freisetzung der Ketone 19-21

a) Reinigung des Rohproduktes (480 mg) durch Blitzchromatographie an Kieselgel (Säule 30x2.8 cm; SiO₂ (Woelm 32-63 m); Laufmittel CH₂Cl₂) und nachfolgende Kugelrohrdestillation bei 65 °C/5 10^{-1} Torr.

Nr.	Verbindung	Summenformel Molmasse	Analyse Ber. Ge	e ef.	IR (Film) (cm ⁻¹)
11	(3E)-2-(3-Buteny1)-2- (trimethylsilyloxy)-3,5- hexadiennitril	C ₁₃ H ₂₁ NOSi (235.4)	С 66.33 Н 8.99 N 5.95	66.35 9.09 5.50	3080, 3040 (=CH); 1640, 1605 (C=C)
12	(3E)2-(3-Buteny1)-2- (triethylsilyloxy)-3,5- hexadiennitril	C ₁₆ H ₂₇ NOS1 (277.5)	С 69.26 Н 9.81 N 5.05	69.09 10.19 4.40	3080, 3040 (≖CH); 1635, 1600 (C=C)
13	(3E)-2-(4-Pentenyl)-2- (trimethylsilyloxy)-3,5- hexadiennitril	C ₁₄ H ₂₃ NOSi (249.4)	С 67.42 Н 9.29 N 5.61	66.37 9.06 5.22	3080, 3040 (=CH); 1640, 1605 (C≈C)
14	(3E)-2-(4-Pentenyl)-2- (triethylsilyloxy)-3,5- hexadiennitril	C ₁₇ H ₂₉ NOSi (291.5)	C 70.04 H 10.03 N 4.80	69.49 10.11 4.80	3080, 3040 (=CH); 1635, 1600 (C≖C)
15	(3E,5E)-2~(3-Butenyl)-2- (trimethylsilyloxy)-3,5- heptadiennitril	C ₁₄ H ₂₃ NOSi (249.4)	C 67.42 H 9.29 N 5.61	67.43 9.31 5.62	3080, 3020 (=CH); 1650, 1635 (C=C)
16	(3E,5E)-2-(4-Pentenyl)-2- (trimethylsilyloxy)-3,5- heptadiennitril	C ₁₅ H ₂₅ NOSi (263.5)	С 68.39 Н 9.57 N 5.32	68.14 9.54 5.29	3080, 3020 (=CH); 1650, 1635 (C=C)
18	(3E)-5-(Trimethylsilyl)- 3-pentenamid	C ₈ H ₁₇ NOSi (171.3)	С 56.09 Н 10.00 N 8.18	55.88 9.81 8.20	3380, 3200 (-NH ₂); 3020 (=CH); 1670 (-CONH ₂); 1640 (C=C).
19	(3E)-1,3,9-Decatrien-5-on	C ₁₀ H ₁₄ O (150.2)	С 79.96 Н 9.39	79.81 9.64	3060 (=CH ₂); 3020 (=CH-); 1685, 1660 (C=O); 1635, 1615, 1585 (C=C); 1000 (CH=CH ₂ , <u>trane</u> -CH=CH); 910 (CH=CH ₂)
20	(6 E ,8E)-1,6,8-Decatrien- 5-on	C ₁₀ H ₁₄ O (150.2)	С 79.96 Н 9.39	79.75 9.66	3080 (=CH ₂); 3040 (=CH-); 1680 1655 (C=0); 1635, 1590 (C=C); 990 (CH=CH ₂ , <u>trans</u> -CH=CH); 910 (CH=CH ₂)
21	(2 E ,4E)-2,4,10-Undecatrie 6-on	n- C ₁₁ H ₁₆ 0 (164.8)	С 80.44 Н 9.82	80.58 10.28	3080 (=CH ₂); 3040 (=CH-); 1685, 1660 (C=C); 1640, 1595 (C=C) 1000 (CH=CH ₂ , <u>trane</u> -CH=CH); 915 (CH=CH ₂)

Tab. 4. Analytische Daten der Verbindungen 11-16, 18 und 19-21

Tab. 5. ¹H-NMR-spektroskopische Daten von 12, 14, 15b, 16b, 18 und 19-21 in CDCl₃ bei 400 MHz

 $\begin{array}{l} 12^{a}: \delta = 0.66 \ (\text{mc}, 6\text{H}, 0\text{SiCH}_2-); \ 0.93 \ (\text{mc}, 9\text{H}, \text{Ch}_2\text{CH}_3); \ 1.81 \ (\text{mc}, 1\text{H}, \\ \underline{J}_{1^+a,1^+b} = 13.50 \ \text{Hz}, \ 1^+-H_a); \ 1.89 \ (\text{mc}, 1\text{H}, 1^+-H_b); \ 2.20 \ (\text{mc}, 2\text{H}, \\ \overline{J}_{2^+a,1^+a} = \underline{J}_{2^+b,1^+b} = 11.40, \ \underline{J}_{2^+a,1^+b} = \underline{J}_{2^+b,1^+a} = 5.10 \ \text{Hz}, 2^+-H_a, 2^+-H_b); \ 4.97 \ (\text{ddt}^{c}), \ 1\text{H}, \ \underline{J}_{4^+b,3^+} = 10.20, \ \underline{J}_{4^+b,2^+a} = \underline{J}_{4^+b,2^+b} = 1.20 \\ \text{Hz}, 4^+-H_b); \ 5.03 \ (\text{ddt}^{c}), \ 1\text{H}, \ \underline{J}_{4^+a,4^+b} = 1.80, \ \underline{J}_{4^+a,3^+} = 17.10, \ \underline{J}_{4^+a,2^+a} = 1.20 \\ \text{Hz}, 4^--H_b); \ 5.03 \ (\text{ddt}^{c}), \ 1\text{H}, \ \underline{J}_{4^+a,4^+b} = 1.80, \ \underline{J}_{4^+a,3^+} = 17.10, \ \underline{J}_{4^+a,2^+a} = 1.20 \\ \text{Hz}, 6^--H_a); \ 5.57 \ (\text{d}^e), \ 1\text{H}, \ \underline{J}_{3^+4} = 15.45 \\ \text{Hz}, \ J_{3^+5} = 0.70 \ \text{Hz}, 3^-\text{H}); \\ 5.78 \ (\text{ddt}^{c^+}), \ 1\text{H}, \ \underline{J}_{3^+,2^+a} = \underline{J}_{3^+,2^+b} = 6.60 \\ \text{Hz}, 3^+-\text{H}); \ 6.31 \ (\text{dt}, 1\text{H}, \\ \underline{J}_{5^+,6a} = 16.95, \ J_{5^+,6b} = 10.05 \\ \text{Hz}, \ 5^-\text{H}); \ 6.51 \ (\text{dd}, \ 1\text{H}, \ \underline{J}_{4^+,5} = 10.35, \\ \underline{J}_{4^+,6a} = \underline{J}_{4^+,6b} = 0.60 \\ \text{Hz}, \ 4^-\text{H}). \end{array}$

14^a): $\delta = 0.66$ (mc, 6H, 20SiCH₂); 0.93 (mc, 9H, CH₂CH₃); 1.51 (mc, 1H, $J_{2'a, 2'b} = 13.10$, $J_{2'a, 1'a} = 11.70$, $J_{2'a, 1'b} = 4.65$ Hz, 2'-H_a); 1.61 (mc, 1H, $J_{2'b, 1'b} = 11.70$, $J_{2'b, 1'a} = 4.65$ Hz, 2'-H_b); 1.71 (mc, 1H, $J_{1'a, 1'b} = 13.20$ Hz, 1'-H_a); 1.85 (mc, 1H, 1'-H_b); 2.07 (mc, 2H, $J_{3'a, 2'a} = J_{3'b, 2'b} = J_{3'a, 2'b} = J_{3'b, 2'a} = 7.00$ Hz, 3'-H_a, 3'-H_b); 4.96 (ddt^c), 1H, $J_{5'b, 4'} = 10.20$, $J_{5'b, 3'a} = J_{5'b, 3'b} = 1.20$ Hz, 5'-H_b); 5.00 (ddt^c), 1H, $J_{5', 5'b} = 1.80$, $J_{5'a, 4'} = 17.10$, $J_{5'a, 3'a} = J_{5'a, 3'b} = 1.65$ Hz, 5'-H_a); 5.24 (mc, 1H, 6-H_b); 5.36 (mc, 1H, $J_{6a, 6b} = 1.20$ Hz, 6-H_a); 5.57 (d^e), 1H, $J_{3', 4} = 15.45$, $J_{3, 5} = 0.70$ Hz, 3-H); 5.76 (ddt^c), 1H, $J_{4', 3'a} = J_{4', 3'b} = 6.60$ Hz, 4'-H); 6.30 (dt, 1H, $J_{5', 6a} = 16.95$, $J_{5', 6b} = 10.05$ Hz, 5-H); 6.50 (dd, 1H, $J_{4,5} = 10.35$, $J_{4', 6a} = J_{4, 6b} = 0.60$ Hz, 4-H).

15b^d): $\delta = 0.14$ (s, 9H, 20SiMe₃); 1.77 (dd, 3H, 7-H); 1.79 (mc, 1H, $\underline{J}_{1'a,1'b} = 13.50$ Hz, 1'-H_a); 1.87 (mc, 1H, 1'-H_b); 2.12 (mc, 1H, $\underline{J}_{2'a,2'b} = 14.35$, $\underline{J}_{2'a,1'a} = 11.40$, $\underline{J}_{2'a,1'b} = 5.10$ Hz, 2'-H_a); 2.22 (mc, 1H, $\underline{J}_{2'b,1'b} = 10.20$, $\underline{J}_{4'b,2'a} = \underline{J}_{4'b,2'b} = 1.20$ Hz, 2'-H_b); 4.96 (ddt^{c)}, 1H, $\underline{J}_{4'b,3'} = 10.20$, $\underline{J}_{4'b,2'a} = \underline{J}_{4'b,2'b} = 1.20$ Hz, 4'-H_b); 5.03 (ddt^{c)}, 1H, $\underline{J}_{4'a,4'b} = 1.80$, $\underline{J}_{4'a,3'} = 17.10$, $\underline{J}_{4'a,2'a} = \underline{J}_{4'a,2'b} = 1.65$ Hz, 4'-H_a); 5.41 (dd, 1H, $\underline{J}_{3,4} = 15.45$, $\underline{J}_{3,5} = 0.60$ Hz, 3-H); 5.78 (ddt^{c)}, 1H, $\underline{J}_{3',2'a} = \underline{J}_{3',2'b} = 6.50$ Hz, 3'-H); 5.86 (dq, 1H, $\underline{J}_{6,7} = 6.60$ Hz, 6-H); 6.03 (mc, 1H, $\underline{J}_{5,6} = 15.15$, $\underline{J}_{5,7} = 1.50$ Hz, 5-H); 6.46 (dd, 1H, $\underline{J}_{4,5} = 10.35$ Hz, 4-H).

16b^d): $\delta = 0.15$ (s, 9H, 20SiMe₃); 1.52 (mc, 2H, $J_{2'a,1'a} = J_{2'b,1'b} = 11.70$, $J_{2'a,1'b} = J_{2'b,1'a} = 4.65$ Hz, 2'-H_a, 2'-H_b); 1.69 (mc, 1H, $J_{1'a,1'b} = 13.20$ Hz, 1'-H_a); 1.76 (dd, 3H, 7-H); 1.81 (mc, 1H, 1'-H_b); 2.06 (mc, 2H, $J_{3'a,2'a} = J_{3'b,2'b} = J_{3'a,2'b} = J_{3'b,2'b} = J_{3'b,2'a} = 7.00$ Hz, 3'-H_a); 4.94 (ddt^c), 1H, $J_{5'b,4'} = 10.20$, $J_{5'b,3'a} = J_{5'b,3'b} = 1.20$ Hz, 5'-H_b); 4.99 (ddt^c), 1H, $J_{5'a,5'b} = 1.80$, $J_{5'a,4'} = 17.10$, $J_{5'a,3'a} = J_{5'a,3'b} = 1.65$ Hz, 5'-H_a); 5.39 (d^b), 1H, $J_{3,4} = 15.45$, $J_{3,5} = 0.60$ Hz, 3-H); 5.76 (ddt^c), 1H, $J_{4',3'a} = J_{4',3'b} = 6.60$ Hz, 4'-H); 5.85 (dq, 1H, $J_{6,7} = 6.60$ Hz, 6-H); 6.03 (mc, 1H, $J_{5,6}$ 15.15, $J_{5,7} = 1.50$ Hz, 5-H); 6.45 (dd, 1H, $J_{4,5} = 10.35$ Hz, 4-H).

18^f): δ = 0.02 (s, 9H, SiMe₃); 1.48 (d, 2H, <u>J</u>_{5,4}=7.20 Hz, 5-H); 2.90 (d, 2H, <u>J</u>_{2,3}=6.30 Hz, 2-H); 5.33 (mc, 1H, <u>J</u>_{3,4}=15.30 Hz, 3-H); 5.58 (mc, 1H, 4-H); 5.75, 6.18 (s (breit), 2H, NH₂).

19: δ = 1.71 (quint., 2H, $\underline{J}_{7.8}$ = 7.35 Hz, 7-H); 2.06 (mc, 2H, $\underline{J}_{8.9}$ = 6.75, $\underline{J}_{8,10a}$ = 1.65, $\underline{J}_{8,10b}$ = 1.20 Hz, 8-H); 2.55 (t, 2H, $\underline{J}_{6.7}$ = 7.35 Hz, 6-H); 4.98 (ddt^c), 1H, 10-H_b); 5.01 (ddt^c), 1H, $\underline{J}_{10a,10b}$ = 1.80 Hz, 10-H_a); 5.51 (mc, 1H, $\underline{J}_{1b,2}$ = 10.05, $\underline{J}_{1b,3}$ = 0.75, $\underline{J}_{1b,4}$ = 0.60 Hz, 1-H_b); 5.63 (mc, 1H, $\underline{J}_{1a,1b}$ = 1.50, $\underline{J}_{1a,2}$ = 16.95, $\underline{J}_{1a,3}$ = 0.90, $\underline{J}_{1a,4}$ = 0.60 Hz, 1-H_a); 6.16 (dd, 1H, 4-H); 6.44 (dddd^c), 1H, $\underline{J}_{2,3}$ = 10.80, $\underline{J}_{2,4}$ = 0.70 Hz, 2-H); 7.11 (dddd^c)</sup>, 1H, $\underline{J}_{3,4}$ = 15.60 Hz, 3-H)

Tab. 5 (Fortsetzung)

20⁶): δ = 1.75 (d^h), 3H, 10-H); 2.26 (mc, 2H, $J_{3,2}$ = 6.60, $J_{3,18}$ = 1.60, $J_{3,1b}$ = 1.30 Hz, 3-H); 2.54 (mc, 2H, 4-H); 4.88 (ddt^c), 1H, 1-H_b); 4.95 (ddt^c), 1H, $J_{18,1b}$ = 1.80 Hz, 1-H_a); 5.75 (ddt^c), 1H, $J_{2,18}$ = 17.10, $J_{2,1b}$ = 10.35 Hz, 2-H); 6.00 (d^h), 1H, 6-H); 6.07-6.16 (m, 2H, $J_{8,7}$ = 10.80, $J_{8,10}$ = 1.50, $J_{9,10}$ = 5.25, $J_{9,8}$ = 15.20, $J_{9,7}$ = 10.05 Hz, 8.9-H); 7.06 (mc, 1H, $J_{7,6}$ = 15.60 Hz, 7-H)

21^g): δ = 1.61 (quint., 2H, $J_{8,9}$ = 7.50 Hz, 8-H); 1.75 (d^h), 3H, $J_{1,2}$ = 5.25 Hz, 1-H); 1.97 (mc, 2H, $J_{9,10}$ = 6.60 , $J_{9,11a}$ = 1.50 , $J_{9,11b}$ = 1.20 Hz, 9-H); 2.44 (t, 2H, $J_{7,8}$ = 7.50 Hz, 7-H); 4.89 (ddt^c), 1H, 11-H_b); 4.93 (ddt^c), 1H, $J_{11a,11b}$ = 2.10 Hz, 11-H_a); 6.07-6.16 (m, 2H, $J_{2,3}$ = 15.20 , $J_{2,4}$ = 10.05 , $J_{3,1}$ = 1.50 , $J_{3,4}$ = 10.80 , $J_{3,5}$, J_{-H} , 3-H); 5.71 (ddt^c), 1H, $J_{10,11a}$ = 17.10, $J_{10,11b}$ = 10.35 Hz, 10-H); 5.99 (d^h), 1H, 5-H); 7.06 (mc, 1H, $J_{4,5}$ = 15.60 Hz, 4-H)

Mit Ausnahme der Silylsignale entsprechen sich die ¹H-NMR-Spektren a) in 11 12 sowie von 13 und 14. - b) $J_{3.5} = 0.60$ Hz bewirkt von und Fall lediglich eine Linienverbreiterung.- c) Infolge von Sigdiesem nalüberlagerungen sind nicht alle Linien sichtbar.- d) Spuren des jeweiligen (3E,5Z)-Isomeren (ca. 2 % laut Kapillargaschromatographie) sind anhand von Signalen bei 5.51 ppm (d. 1H. $J_{3,4} = 15.60$ Hz, 3-H) $J_{4,5} = 11.00$ Hz, 4-H) nachweisbar.- e) $J_{3,5}$ = und 6.80 ppm (dd, 1H, 0.70 Hz bewirkt lediglich eine Signalverbreiterung.- f) Meßfrequenz 90 MHz, CDCl₃. g) Spuren des C-1/C-2-Z-konfigurierten Isomeren von 10b und 10c (ca. 2 % laut Kapillargaschromatographie) sind ¹H-NMR-spektroskopisch anhand eines Signals bei 7.47 ppm nachweisbar (ddd. 1H. <u>J_{3,4} = 15.60, J_{3,2} = 11.55, J_{3,1} = 0.85 Hz, 3-H).- h) Starke Signal-</u> verbreiterungen durch Fernkopplungen.

aus. Nach Neutralwaschen mit gesätt. NH₄Cl-Lösung und Abziehen des Solvens wird das Rohprodukt wie angegeben aufgearbeitet.

¹H-NMR-Versuche zur intramolekularen Diels-Alder-Reaktion: Etwa 1 M Lösungen von 11-16 in 0.3-0.4 ml absol. [D₆]Benzol werden im abgeschmolzenen NMR-Rohr auf 180 °C erhitzt. Der Umsatz wird nach 2, 6, 12, 24 und 36 h über das Integrationsverhältnis aliphatischer zu olefinischen Protonensignalen kontrolliert. In allen Fällen ist nach 24 h das Edukt umgesetzt.

Präparative intramolekulare Diels-Alder-Reaktionen

 $(3aR^*,7aR^*)$ -2,3,3a,4,5,7a-Hexahydro-1H-inden-1-on (cis-22) und (3aS^*,7aR^*)-2,3,3a,4,5,7a-Hexahydro-1H-inden-1-on (trans-22) aus 12: 1.07 g (3.82 mmol) 12 werden in 3 ml absol. Benzol im Bombenrohr 24 h auf 180°C erhitzt. Nach Abziehen des Solvens verbleiben 1.07 g als gelborangefarbene Flüssigkeit. – IR (Film): 3020 (=CH); 1640, 1630 cm⁻¹ (C=C). – ¹H-NMR (90 MHz/CDCl₃): $\delta = 0.52-1.05$ (m, 15H, OSiEt₃); 1.25–2.55 (m, 10H, 2,3,3a,4,5,7a-H); 5.68–6.02 (m, 2H, 6,7-H). – Daneben sind noch Spuren einer Verbindung mit endständiger Dienophileinheit des Typs CH_2 =CH anhand eines charakteristischen Multipletts bei 4.88–5.08 ppm nachweisbar.

Zur Desilylierung werden 980 mg des Rohproduktes mit 570 mg (3.53 mmol) NEt₃ · 3 HF in insgesamt 8 ml absol. THF 3 h bei Raumtemp. gerührt. Nach Aufarbeitung wie für 19–21 erhält man 780 mg einer gelborangefarbenen Flüssigkeit. Blitzchromatographie an Kieselgel (Säule 2.8 × 30 cm; SiO₂ Woelm 32–63 μ m; Laufmittel CH₂Cl₂) und nachfolgende Kugelrohrdestillation der Hauptfraktion bei 60°C/0.1 Torr liefern 253 mg (53%, bezogen auf 12) *cis*- und *trans*-22 im Verhältnis 64:36 (¹³C-NMR, 100 MHz/CDCl₃, Integration der Signale von C-7, 3a, 7a).

IR (Film): 3030 (=CH); 1735 (C=O); 1650 (C=C, *cis*-**22d**); 1635 (C=C, *trans*-**22d**) cm⁻¹. – ¹H-NMR (90 MHz/CDCl₃): δ = 1.12–2.72 (m, 10H, 2,3,3a,4,5,7a-H); 5.70 (mc,

2H, 6,7-H). Daneben finden sich geringe Mengen (5%) des α , β -ungesättigten, bicyclischen Ketons **23**³²⁾ bei 6.58 ppm (mc, 1 H, 7-H). $-^{13}$ C-NMR (100 MHz/CDCl₃): *cis*-**22**: $\delta = 23.40$ (t, C-5); 25.43 (t, C-3); 28.20 (t, C-4); 36.18 (d, C-3a); 40.30 (t, C-2); 51.00 (d, C-7a); 124.01 (d, C-7); 128.75 (d, C-6); 212.87 (s, C-1). - *trans*-**22**: $\delta = 23.59$ (t, C-5); 25.01 (t, C-3); 32.17 (t, C-4); 41.09 (d, C-3a); 41.48 (t, C-2); 53.34 (d, C-7a); 122.82 (d, C-7); 128.20 (d, C-6); 210.07 (s, C-1). Die Zuordnung von C-3 und C-5 zu *cis*- und *trans*-**22** ist nicht gesichert.

C₉H₁₂O (136.2) Ber. C 79.37 H 8.88 Gef. C 79.49 H 9.36

2,3,3a,4,5,7a-Hexahydro-5-methyl-1-(trimethylsilyloxy)-1H-inden-1-carbonitrile (cis- und trans-24a/b) aus 15b und deren Überführung in die Ketone (3aS*,5R*,7aR*)-2,3,3a,4,5,7a-Hexahydro-5-methyl-1H-inden-1-on (cis-25) und (3aR*,5R*,7aR*)-2,3,3a,4,5,7a-Hexahydro-5-methyl-1H-inden-1-on (trans-25): 2.59 g (10.4 mmol) 15b werden in 7 ml absol. Benzol im Bombenrohr 24 h auf 180°C erhitzt. Nach Abziehen des Solvens verbleiben 2.62 g (100%) gelbe Flüssigkeit als spektroskopisch reines 24. ¹³C-NMR-spektroskopische Untersuchung der quantitativen Zusammensetzung (Diastereomerenverhältnis (a/b)) ergibt cis:trans = 55(71/29):45 (67/33). – IR (Film): 3010 (=CH); 1635 (C=C) cm⁻¹. – ¹H-NMR (90 MHz/ CDCl₃, C₆H₆ intern): $\delta = 0.13, 0.15, 0.17, 0.18$ (s, 9 H, OSiMe₃); 0.94, 0.98 (d, 3 H, J_{5-Me.5} = 6.90 Hz, 5-CH₃); 1.20–2.63 (m, 9 H, 2,3,3a,4,5,7a-H); 5.57–5.92 (m, 2 H, 6,7-H). – ¹³C-NMR $(100 \text{ MHz/CDCl}_3): cis-24a: \delta = 1.11 (q, OSiMe_3); 21.98 (q, 5-CH_3); 51.31 (d, C-7a); 78.91$ (s, C-1); 121.80 (s, CN); 123.01 (d, C-7); 137.42 (d, C-6). $- cis-24b: \delta = 0.96$ (q, OSiMe₃); 21.31 (q, 5-CH₃); 50.80 (d, C-7a); 74.43 (s, C-1); 121.38 (s, CN); 122.77 (d, C-7); 135.81 (d, C-6). - trans-24a: $\delta = 1.11$ (q, OSiMe₃); 21.22 (q, 5-CH₃); 56.01 (d, C-7a); 72.54 (s, C-1); 121.46 (s, CN); 123.01 (d, C-7); 136.26 (d, C-6). Die C-6-Signale von cis-24b und trans-24a sind vertauschbar. – trans-24b: $\delta = 1.02$ (q, OSiMe₃); 21.22 (q, 5-CH₃); 56.45 (d, C-7a); 77.18 (s, C-1); 122.14 (s, CN); 128.20 (d, C-7); 137.87 (d, C-6). - Folgende Signale können nicht eindeutig zugeordnet werden: $\delta = 41.81, 40.80, 40.45, 38.71, 36.73, 35.13, 35.08, 34.69, 34.59$ 34.48, 33.98, 30.35, 30.02, 29.69, 29.59, 29.01, 27.86, 27.44 (C-2 bis C-5).

2.50 g (10.0 mmol) rohes 24 werden mit 1.61 g (10.0 mmol) NEt₃ · 3 HF in insgesamt
20 ml absol. THF 1 h bei Raumtemp. gerührt und wie bei 19-21 aufgearbeitet. Der Rückstand (1.25 g) ergibt bei 65°C/0.01 Torr 1.10 g cis- und trans-25 im Verhältnis 54-57:43-46 (¹³C-NMR, 100 MHz/CDCl₃, aus den Intensitäts- und Integrationsverhältnissen der Signale C-2 bis C-7a und 5-CH₃ bestimmt; GC) in einer Gesamtausbeute von 73% bezogen auf 15b. C₁₀H₁₄O (150.2) Ber. C 79.96 H 9.39 Gef. C 80.17 H 9.70

IR (Film): 3030 (=CH); 1740 (C=C); 1655 (C=C, cis-25); 1640 cm⁻¹ (C=C, trans-25). -¹H-NMR (400 MHz/CDCl₃): cis-25: $\delta = 0.96$ (d, 3H, $J_{5-Me.5} = 7.05$ Hz, 5-CH₃); 2.61 (mc, 1 H, 7a-H); 5.50 (ddd, 1 H, $J_{6,7} = 9.95$, $J_{6,5} = 3.85$, $J_{6,7a}$ oder $J_{6,4-\ddot{a}q} = 2.70$ Hz, 6-H); 5.64 (dt, 1 H, $J_{7,7a}$ 2.80, $J_{7,5}$ oder $J_{7,3a}$ = 2.80 Hz, 7-H). - trans-25: δ = 0.91 (d, 3 H, $J_{5-Me,5}$ = 7.10 Hz, 5-CH₃); 2.69 (mc, 1 H, 7a-H); 5.57 (mc, 1 H, $J_{6,7} = 9.90$, $J_{6,5} = 2.45$ Hz, zusätzlich treten Fernkopplungen in der Größenordnung von J = 1.30 Hz auf, 6-H); 5.75 (ddd, 1 H, $J_{7,7a} =$ 4.65, $J_{7.5}$ oder $J_{7.3a} = 2.75$ Hz, 7-H). - Signale ohne eindeutige Zuordnung: $\delta = 0.83$ (dt, 1 H, J = 10.95, 13.10 Hz; 1.36 (ddd, 1 H, J = 13.40, 8.00, 4.30 Hz); 1.60 - 1.75 (m, 4H); 1.93 (ddd, 1H, J = 13.20, 8.70, 6.65, 4.85 Hz); 2.01 (dddd, 1H, J = 12.05, 11.80, 9.35, 6.90 Hz);2.07 - 2.29 (m, 6H); 2.42 - 2.57 (m, 2H). - Darüber hinaus sind noch Spuren des endständig Z-konfigurierten Ketons 20 anhand des charakteristisch tieffeldverschobenen Signals bei 7.47 ppm nachweisbar (ddd, 1 H, CH = CHCO), die offensichtlich aus dem Anteil von ca. 2% (GC) des nichtcyclisierbaren (3E,5Z)-Isomeren von 15b stammen. - ¹³C-NMR (100 MHz/CDCl₃): cis-25: $\delta = 21.28$ (q, 5-CH₃); 25.04 (t, C-3); 30.10 (d, C-5); 32.95 (d, C-3a); 34.44 (t, C-4); 34.98 (t, C-2); 49.60 (d, C-7a); 121.80 (d, C-7); 135.23 (d, C-6); 218.55 (s, C-1). - trans-25: $\delta = 20.74$ (q, 5-CH₃); 26.06 (t, C-3); 26.30 (d, C-5); 31.71 (t, C-4); 34.80 (d, C-3a); 36.86 (t, C-2); 49.32 (d, C-7a); 121.19 (d, C-7); 134.76 (d, C-6); 218.70 (s, C-1).

1,2,3,4,4a,5,6,8a-Octahydro-1-(trimethylsilyloxy)-1-naphthalincarbonitrile (cis- und trans-**26**) aus **13** und ihre Umwandlung in $(4aR^*, 8aR^*)$ -3,4,4a,5,6,8a-Hexahydro-1(2H)-naphthalinon(trans-27): 1.34 g (5.37 mmol) 13 werden in 5 ml absol. Benzol in einem Bombenrohr 24 h auf 180°C erhitzt. Nach Abziehen des Solvens verbleiben 1.50 g einer gelben Flüssigkeit, die bei 80° C/7 · 10^{-2} Torr 1.16 g = (86%) 26 liefert. ¹³C-NMR-Spektren ergeben aus den Intensitäts- und Integrationsverhältnissen der C-8a-Signale die Zusammensetzung (Diastereomerenverhältnis (a/b)) cis:trans = 64 (58/42):36 (64/36). – IR (Film): 3030 (=CH); $1645 (C=C) \text{ cm}^{-1}$. - ¹H-NMR (90 MHz/CDCl₃, C₆H₆ intern): $\delta = 0.20$ (s, 9 H, OSiMe₃); 1.15 - 2.67 (m, 12H, 2,3,4,4a,5,6,8a-H); 5.62 - 5.82 (m, 2H, 7,8-H). $- {}^{13}$ C-NMR (100 MHz/ $CDCl_3$: cis-26a: $\delta = 1.27$ (q, OSiMe₃); 45.38 (d, C-8a); 74.17 (s, C-1); 121.99 (s, CN); 122.60 (d, C-8); 129.04 (d, C-7). - cis-26b: $\delta = 1.36$ (q, OSiMe₃); 40.02 (d, C-8a); 73.58 (s, C-1); 121.89 (s, CN); 124.13 (d, C-8); 129.91 (d, C-7). - trans-26a: $\delta = 1.20$ (q, OSiMe₃); 52.07 (d, C-8a); 72.61 (s, C-1); 120.50 (s, CN); 124.55 (d, C-8); 129.55 (d, C-7). – Die Signale von C-7 von cis- und trans-26a sind vertauschbar. - trans-26b: $\delta = 1.08$ (q, OSiMe₃); 51.15 (d, C-8a); 70.81 (s, C-1); 126.46 (d, C-8). – Signale ohne eindeutige Zuordnung: $\delta = 36.55$, 34.34, 31.97, 31.87, 29.27, 28.91, 26.80, 26.18, 25.40, 23.55, 23.03, 22.32, 21.89, 21.76, 19.00 (C-2 bis C-5). — Die Zuordnung von C-1, 7, 8, CN und $OSiMe_3$ erfolgt ausgehend von den C-8a-Resonanzen entsprechend den relativen Intensitäten und Integrationsverhältnissen der Signale.

C₁₄H₂₃NOSi (249.4) Ber. C 67.42 H 9.29 N 5.62 Gef. C 67.38 H 9.06 N 5.71

500 mg (2.00 mmol) *cis/trans*-26 werden mit 372 mg (2.20 mmol) *n*-Bu₄NF in insgesamt 5 ml absol. CH₂Cl₂ 1 h bei Raumtemp. gerührt und wie bei 19–21 aufgearbeitet. Das Rohprodukt liefert 200 mg (66%) *trans*-27 vom Sdp. 80–85°C/5 · 10⁻¹ Torr. – IR (Film): 3030 (=CH); 1710 (C=O); 1650 (C=C) cm⁻¹. – ¹H-NMR (90 MHz/CCl₄, TMS intern): $\delta = 1.43-2.37$ (m, 11 H, 2,3,4,4a,5,6-H); 2.83 (mc, 1H, J_{8a,4a} = 11.40 Hz, 8a-H); 5.64 (mc, 1H, J_{7,8} = 10.20, J_{7,6} = 3.20 Hz, 7-H); 5.92 (mc, 1 H. J_{8,8a} = J_{8,6} = 1.80 Hz, 8-H). – ¹³C-NMR (100 MHz/CDCl₃): $\delta = 22.71$, 24.16, 25.34 (t, C-3,4,5,6); 34.47 (d, C-4a); 35.76 (t, C-2); 49.57 (d, C-8a); 122.37 (d, C-8); 128.87 (d, C-7); 215.80 (s, C-1).

1,2,3,4,4a,5,6,8a-Octahydro-6-methyl-1-(trimethylsilyloxy)-1-naphthalincarbonitrile (cisund trans-28) aus 16b und ihre Umwandlung in die Ketone ($4aS^*,6R^*,8aR^*$)- (cis-29), ($4aS^*,6R^*,8aS^*$)- (epi-29) und ($4aR^*,6R^*,8aR^*$)-3,4,4a,5,6,8a-Hexahydro-6-methyl-1(2H)naphthalinon (trans-29): 2.73 g (10.4 mmol) 16b werden in 7 ml absol. Benzol in einem Bombenrohr 24 h auf 180°C erhitzt. Nach Abziehen des Solvens verbleiben 2.76 g (100%) einer gelben Flüssigkeit als spektroskopisch reines 28. Die Zusammensetzung (Diastereomerenverhältnis (a/b)) ergibt laut ¹³C-NMR-Daten (über Integration der C-8a-Signale bestimmt) cis: trans = 61 (56/44):39 (74/26). – IR (Film): 3010 (=CH); 1635 (C=C) cm⁻¹.

¹H-NMR (90 MHz/CDCl₃, C₆H₆ intern): $\delta = 0.12$, 0.15, 0.17 (s, 9H, OSiMe₃); 0.92, 0.97, 1.00 (d, 3H, J_{6-Me,6} = 6.90 Hz, 6-CH₃); 1.33 - 2.27 (m, 11 H, 2,3,4,4a,5,6,8a-H); 5.63 - 5.78 (mc, 2H, 7,8-H). - ¹³C-NMR (100 MHz/CDCl₃): cis-28a: $\delta = 44.43$ (d, C-8a); 74.18 (s, C-1, vertauschbar mit C-1 von trans-28a); 120.13 (s, CN); 123.74 (d, C-8); 133.54 (d, C-7). cis-28b: $\delta = 46.46$ (d, C-8a); 70.63 (s, C-1); 121.80 (s, CN, vertauschbar mit CN von trans-28a); 124.80 (d, C-8, vertauschbar mit C-8 von trans-28a); 136.72 (d, C-7, vertauschbar mit C-7 von trans-28a). - trans-28a: $\delta = 52.46$ (d, C-8a); 70.63 (s, C-1); 121.65 (s, CN); 123.22 (d, C-8); 135.91 (d, C-7). - trans-28b: $\delta = 50.89$ (d, C-8a); 70.63 (s, C-1); 121.55 (s, CN); 125.38 (d, C-8); 135.21 (d, C-7). - Signale ohne eindeutige Zuordnung: $\delta = 40.16$, 39.74, 38.99, 38.05, 35.94, 33.71, 33.06, 32.51, 32.41, 32.26, 31.90, 31.69, 31.39, 30.77, 30.53, 29.81, 29.32, 29.26, 23.11, 21.58, 21.44, 21.34, 19.16, 16.98 (C-2 bis C-6, 6-CH₃). (Die Zuordnung von C-1,7,8 und CN erfolgt ausgehend von den C-8a-Resonanzen entsprechend den relativen Intensitäten und Integrationsverhältnissen der Signale.)

2.63 g (10.0 mmol) rohes 28 werden mit 1.61 g (10.0 mmol) NEt₃ · 3 HF in insgesamt 20 ml absol. THF 1 h bei Raumtemp. gerührt und wie bei 19–21 aufgearbeitet. Der Rückstand (1.90 g) liefert bei 70–75 °C/1 · 10⁻¹ Torr 1.10 g (67%) eines Gemischs aus *cis*-29, *epi*-29 und *trans*-29 im Verhältnis 45:12:43 (¹³C-NMR, 100 MHz/CDCl₃). Beim Versuch einer präparativen Trennung der 3 Isomeren durch Blitzchromatographie von 400 mg des Destillats an Kieselgel (Säule 30 × 2.8 cm; SiO₂ Woelm 32–63 µm; Laufmittel CH₂Cl₂) resultiert lediglich eine einzige Fraktion (367 mg; Massenbilanz 92%), welche die 3 Komponenten nunmehr im Verhältnis *cis*-29:*epi*-29:*trans*-29 = 6:50:44 enthält (¹³C-NMR, 100 MHz/CDCl₃).

C11H16O (164.2) Ber. C 80.44 H 10.20 Gef. C 80.66 H 9.82

IR (Film): 3040 (=CH); 1720, 1710 (C=O) cm⁻¹. – Die Zuordnung der Signale im ¹Hund ¹³C-NMR Spektrum erfolgte durch Vergleich der Spektren des 3-Komponentengemischs vor und nach der Säulenchromatographie. $- {}^{1}$ H-NMR (400 MHz/CDCl₃): *cis*-29: $\delta = 0.92$ (d, 1 H, $J_{6,6-CH_3} = 7.25$ Hz, 6-CH₃); 2.92 (mc, 1 H, 8a-H); 5.65 (mc, 2 H, $J_{6,7} = 4.45$, $J_{7,8} = 4.45$ 10.10, $J_{7,8a} = 2.55$ Hz, 7,8-H). - epi-29: $\delta = 0.91$ (d, 3H, $J_{6,6-CH_3} = 7.20$ Hz, 6-CH₃); 2.70 (mc, 1 H, $J_{4a,8a} = 11.65$ Hz, 8a-H); 5.52 (mc, 1 H, $J_{5,7-\ddot{a}q} = 1.15$, $J_{6,7} = 2.45$, $J_{7,8} = 10.10$, $J_{7,8a} = 2.45$ Hz, 7-H); 5.85 (dt, 1 H, $J_{6,8} = 2.10$, $J_{8,8a} = 2.10$ Hz, 8-H). - trans-29: $\delta = 0.90$ (d, 3H, $J_{6,6-CH_3} = 7.10$ Hz, 6-CH₃); 2.66 (mc, 1H, $J_{4a,8a} = 11.10$ Hz, 8a-H); 5.61 (mc, 1H, $J_{5,7-\ddot{u}q} = 1.30, J_{6,7} = 4.15, J_{7,8} = 10.10, J_{7,8a} = 2.75$ Hz, 7-H); 5.88 (dt, 1 H, $J_{6,8} = 1.75, J_{8,8a} = 1.75$ 1.75 Hz, 8-H). – Signale ohne eindeutige Zuordnung: $\delta = 1.05 - 1.18$, 1.28 - 2.07, 2.14-2.35 (3m, 10H, 2-H bis 6-H). - ¹³C-NMR (100 MHz/CDCl₃): cis-29: $\delta = 20.93$ (q, 6-CH₃); 22.50 (t, C-3); 30.74 (t, C-4); 31.87 (d, C-6); 34.63 (t, C-5); 37.32 (d, C-4a); 41.68 (t, C-2); 50.18 (d, C-8a); 123.62 (d, C-6); 135.14 (d, C-7); 211.92 (s, C-1). $-epi-29: \delta = 21.36$ (q, 6-CH₃); 26.43 (t, C-3); 31.09 (d, C-6); 32.10 (t, C-4); 39.40 (t, C-5); 41.18 (t. C-2); 42.02 (d, C-4a); 53.45 (d, C-8a); 121.85 (d, C-8); 134.66 (d, C-7); 209.88 (s, C-1). - trans-29: $\delta = 21.36$ (q, 6-CH₃); 26.59 (t, C-3); 28.95 (d, C-6); 32.19 (t, C-4); 36.78 (d, C-4a); 36.78 (t, C-5); 41.18 (t, C-2); 53.49 (d, C-8a); 121.85 (d, C-8); 133.96 (d, C-7); 209.88 (s, C-1).

Säurekatalysierte Isomerisierung von cis-, epi- und trans-29 zu $(4aS^*,6S^*)$ -3,4,4a,5,6,7-Hexahydro-6-methyl-1(2H)-naphthalinon (cis-30) und $(4aR^*,6S^*)$ -3,4,4a,5,6,7-Hexahydro-6methyl-1(2H)-naphthalinon (trans-30): Die Lösung von 100 mg (0.61 mmol) des Gemisches aus cis-, epi- und trans-29 (6:50:44) in 0.4 ml CDCl₃ wird mit einem Tropfen Trifluoressigsäure versetzt. Die Reaktion ist laut ¹H-NMR-Spektroskopie (60 MHz, olefinische 7- und 8-H-Signale des Eduktgemischs) nach 24 h beendet. Die Reaktionsmischung wird nach Zugabe von 10 ml Et₂O mit je 5 ml gesättigter Na₂CO₃- und NH₄Cl-Lösung ausgeschüttelt und die organische Phase über MgSO₄ getrocknet. Nach Abziehen des Solvens im Rotavapor und Kugelrohrdestillation des Rückstands bei 80°C/5 · 10⁻² Torr erhält man 80.3 mg (80%) 30 als Gemisch der beiden möglichen Diastereomeren im Verhältnis 50:50 (¹³C-NMR, 100 MHz/CDCl₃). Die Identifizierung erfolgt durch Vergleich mit den spektroskopischen Daten (¹H-NMR, 400 MHz/CDCl₃; ¹³C-NMR, 100 MHz/CDCl₃; IR) des aus 21 synthetisierten Diastereomerengemisches.

3,4,4a,5,6,7-Hexahydro-1(2H)-naphthalinon (34) aus 19: Zweimal 90.0 mg (insgesamt 1.20 mmol) 19 werden in je 0.5 ml absol. C₆D₆ gelöst und in abgeschmolzenen NMR-Röhrchen auf 180 °C erhitzt, bis im ¹H-NMR-Spektrum (60 MHz) keine Veränderung mehr feststellbar ist. Nach 24 h sind die Signale der 1,3-Dienbindungsprotonen des Edukts 19 vollständig verschwunden, ein ungewöhnlich hoher Anteil an nicht umgesetzter Dienophileinheit bleibt jedoch auch bei einer Verlängerung der Reaktionszeit auf 30 h mit unverminderter Intensität erhalten (4.90-5.25 ppm, m, 2H, CH_2 =CH). Von den vereinigten Proben wird das Solvens abgezogen. Kugelrohrdestillation des Rückstands bei 70°C/5 · 10⁻¹ Torr liefert 31.5 mg

(35%) 34 als farblose Flüssigkeit (Destillationsrückstand 138 mg orangefarbenes Harz). Die Charakterisierung von 34 erfolgt IR- und ¹H-NMR-spektroskopisch (90 MHz/CDCl₃) durch Vergleich mit den entsprechenden Literaturdaten³³⁾.

 $(4aS^*,6S^*)$ -3,4,4a,5,6,7-Hexahydro-6-methyl-1(2H)-naphthalinon (30a) und $(4aR^*,6S^*)$ -3,4,4a,5,6,7-Hexahydro-6-methyl-1(2H)-naphthalinon (30b) aus 21: 1.74 g (10.5 mmol) 21 werden in 8 ml absol. Benzol im Bombenrohr nach Vorgabe eines ¹H-NMR-Rohrversuchs 70 h auf 180°C erhitzt. Nach Abziehen des Solvens liefert die Kugelrohrdestillation des Rückstands (1.74 g) bei 80° C/5 · 10^{-2} Torr 1.00 g (58%) 30 a/b (b/a) als Diastereomerengemisch im Verhältnis 67-70:30-33 (¹³C-NMR (100 MHz/CDCl₃), aus den Intensitätsund Integrationsverhältnissen folgender Signale bestimmt: C-3,4,6,7,8,8a,6-CH₃; Kapillar-GC). Eine Konfigurationszuordnung erlauben die vorliegenden spektroskopischen Daten nicht.

C11H16O (164.2) Ber. C 80.44 H 9.82 Gef. C 79.90 H 10.00

IR (Film): 3070 (=CH); 1685 (C=O); $1645 \text{ cm}^{-1} (C=C)$. $- {}^{1}\text{H-NMR} (400 \text{ MHz/CDCl}_{3})$: Überschußdiastereomeres: $\delta = 0.85$ (d, 3H, $J_{6-Me,\delta} = 7.15$ Hz, 6-CH₃); 6.53 (dt, 1H, $J_{8,7} =$ 4.00, 3.05, $J_{8,9}$ oder $J_{8,4a} = 3.05$ Hz, einige Linien mit zusätzlicher Feinspaltung von J =0.60 Hz, 8-H). – Unterschußdiastereomeres: $\delta = 0.87$ (d, 3 H, $J_{6-Mc,6} = 7.00$ Hz, 6-CH₃); 6.59 (dt, 1 H, $J_{8,7} = 5.00$, 2.50, $J_{8,6}$ oder $J_{8,4a} = 2.50$ Hz, 8-H). Die übrigen Signale können nicht mehr eindeutig zugeordnet werden: $\delta = 1.19$ (dq, 1H, J = 3.15, 12.70 Hz); 1.26 (dq, 1 H, J = 3.55, 12.45 Hz); 1.31 (ddd, 1 H, J = 13.10, 9.65, 3.50 Hz); 1.52-1.93 (m, 13 H); 2.12-2.36 (m, 6H); 2.43 (mc, 1H, J = 5.00, 2.65 Hz); 2.48 (mc, 1H, J = 4.95, 2.50 Hz). -¹³C-NMR (100 MHz/CDCl₃): Überschußdiastereomeres: $\delta = 19.40$ (q, 6-CH₃); 22.58 (t, C-3); 24.80 (d, C-6); 31.31 (t, C-4); 32.79 (d, C-4a); 32.79 (t, C-5); 35.87 (t, C-7); 39.98 (t, C-2); 133.82 (d, C-8); 139.05 (s, C-8a); 200.78 (s, C-1). - Unterschußdiastereomeres: $\delta = 21.36$ (q, 6-CH₃); 26.59 (t, C-3); 28.95 (d, C-6); 32.19 (t, C-4); 36.78 (d, C-4a); 36.78 (t, C-5); 41.18 (t, C-2); 53.49 (d, C-8a); 121.85 (d, C-8); 133.96 (d, C-7); 209.88 (s, C-1).

CAS-Registry-Nummern

1: 20432-40-0 / 2a: 142-83-6 / 2b: 53398-76-8 / 3a: 7677-24-9 / 3b: 18301-88-7 / 4: 102870-60-0 / 5: 102870-61-1 / 6a: 102870-62-2 / 6b: 102870-63-3 / 7: 5162-44-7 / 8: 1119-51-3 / 9: 778-29-0 / 10: 19300-54-0 / 11: 102870-64-4 / 12: 102870-65-5 / 13: 102870-66-6 / 14: 102870-67-7 / 15a: 102870-68-8 / 15b: 102870-69-9 / 16a: 102870-70-2 / 16b: 102870-93-9 / 18: 102870-71-3 / 19: 93469-38-6 / (E,E)-20: 102870-72-4 / (E,Z)-20: 102870-95-1 / (E,E)-21: 102870-74-5 / (trans)-24a: 102870-74-6 / (trans)-24a: 102870-76-2 / (cis)-24a: 102870-75-7 / (trans)-24b: 102870-77-9 / (cis)-25: 102870-78-0 / (trans)-25: 102870-79-1 / (cis)-26a: 102870-80-4 / (trans)-26b: 102870-83-7 / 27: 21370-71-8 / (cis)-28a: 102870-84-8 / (trans)-28a: 102870-86-0 / (cis)-28b: 102870-85-9 / (trans)-28b: 102870-87-1 / (cis)-29: 102870-84-8 / (trans)-28a: 102870-88-2 / (trans)-29: 102870-89-3 / epi-29: 102870-94-0 / 30a: 102870-87-1 / (cis)-29: 102870-91-7 / 33: 102870-92-8 / 34: 24037-79-4

¹⁾ XI. Mitteilung: S. Hünig und H. Reichelt, Chem. Ber. 119, 1772 (1986); X. Mitteilung: U. Hertenstein, S. Hünig, H. Reichelt und R. Schaller, Chem. Ber. 119, 722 (1986).

²⁾ K. Fischer, Dissertation, Univ. Würzburg 1985.

 ³⁾ K. Alder und M. Schumacher, Fortschr. Chem. Org. Naturst. 10, 66 (1953).
 ⁴⁾ Übersichten: ⁴⁰⁾ H. Wollweber in Methoden der organischen Chemie (Houben-Weyl-Mül-Ubersichten: ⁴⁶ H. Wollweber in Methoden der organischen Chemie (Houben-Weyl-Müller), 4. Aufl., Bd. V/1c, S. 1113ff., Thieme Verlag, Stuttgart 1970. – ⁴⁶) R. G. Carlson, Ann. Rep. Med. Chem. 9, 270 (1974). – ⁴⁶ G. Mehta, J. Chem. Educ. 53, 551 (1976). – ⁴⁶ W. Oppolzer, Angew. Chem. 89, 10 (1977); Angew. Chem., Int. Ed. Engl. 16, 10 (1977). – ⁴⁶ W. Oppolzer in New Synthetic Methods, Bd. 6, S. 1ff., Verlag Chemie, Weinheim 1979. – ⁴⁶ G. Brieger und J. N. Bennett, Chem. Rev. 80, 63 (1980). – ⁴⁸⁾ E. Ciganek, Org. React. 32, 1 (1984). – ⁴⁶⁾ D. F. Taber, Intramolecular Diels-Alder Reactions and Alder Ene-Reactions. Springer Verlag, New York 1984. – ⁴⁶⁾ A. G. Fallis, Can. J. Chem. 62, 183 (1984). – ⁴⁶⁾ H. Wurziger, Kontakte (Merck) 1984, 3.

- ^{5) 5a)} K. J. Shea und S. Wise, J. Am. Chem. Soc. 100, 6519 (1978). ^{5b)} K. J. Shea und S. *Wise*, Tetrahedron Lett. 1979, 1011. $-\frac{5c}{K}$ *K. J. Shea*, *P. S. Beauchamp* und *R. S. Lind*, J. Am. Chem. Soc. 102, 4544 (1980). $-\frac{5d}{K}$ *K. J. Shea*, Tetrahedron 36, 1683 (1980). $-\frac{5c}{K}$ *K. J.* Shea und E. Wada, J. Am. Chem. Soc. 104, 5715 (1982). – ⁵⁰ K. J. Shea und J. W. Gilman, Tetrahedron Lett. 1983, 657. – ⁵⁰ K. J. Shea und P. D. Davis, Angew. Chem. 91, 422 (1983); Angew. Chem., Int. Ed. Engl. 22, 419 (1983).
- ⁹ Yi-Tsong Lin und K. N. Houk, Tetrahedron Lett. 26, 2269, 2517 (1985); F. K. Brown und K. N. Houk, ebenda 25, 4609 (1984); F. K. Brown und K. N. Houk, J. Am. Chem. Soc. 107, 1971 (1985).
- ⁷⁾ U. Hertenstein, S. Hünig und M. Öller, Chem. Ber. 113, 3783 (1980).
- ⁸⁾ Vgl. hierzu Lit.¹⁾.
- ⁹⁾ Wir danken der Firma Wacker-Chemie, Burghausen, für die Überlassung von Sorbinaldehyd.
- ¹⁰⁾ S. Hünig und M. Öller, Chem. Ber. 113, 3803 (1980).
- ¹¹⁾ Das aus 48proz. Fluorwasserstoffsäure und Triethylamin zugängliche Salz NEt₃ · 2 HF verwandelt die O-Silylcyanhydrine in ein Gemisch von Cyanhydrin und Keton, während Et₃N · 3 HF (dankenswerter Weise überlassen von der Hoechst AG, jetzt käuflich bei Riedel de Haen) nur Cyanhydrine erzeugt.
- ¹²⁾ cis-22 wurde bereits bei der Photolyse von Bicyclo[3.2.2]non-6-en-2-on erhalten; jedoch erlauben die angegebenen Daten keine eindeutige Konfigurationszuordnung; L. A. Paquette, R. P. Henzel und R. F. Eizember, J. Org. Chem. 38, 3257 (1973). ¹³⁾ Bisherige Synthesen, bei denen u. a. 27 zu erwarten gewesen wäre, liefern das konjugierte
- Isomere 34; vgl. M. I. Bowman, C. C. Ketterer und A. U. Chamberlain, J. Org. Chem. 18, 905 (1953).
- ¹⁴⁾ F. Näf, R. Decorzant und W. Thommen, Helv. Chim. Acta 62, 114 (1979); F. Näf, R. Decorzant und W. Thommen, ebenda 65, 2212 (1982).
- ¹⁵⁾ W. R. Roush und S. E. Hall, J. Am. Chem. Soc. 103, 5200 (1981).
- ¹⁶) ¹⁶ *R*. Metzger, E. Casadevall und M. J. Pouet, Org. Magn. Reson. 19, 229 (1982). Vergleiche auch: ^{16b} H.-O. Kalinowski, S. Berger und S. Braun, ¹³C-NMR-Spektroskopie, Thieme Verlag, Stuttgart 1984. ^{16e} F. Frinquelli, F. Pizzo, A. Taticchi, T. D. J. Halls und E. Wenkert, J. Org. Chem. 47, 5056 (1982). ¹⁷⁾ ^{17a} H. Günther, NMR-Spektroskopie, 2. Aufl., Thieme Verlag, Stuttgart 1983. - ^{17b} L. M.
- Jackman und S. Sternhell, Applications of Nuclear Magnetic Resonance Spectroscopy in Organic Chemistry, 2. Aufl., Pergamon Press, London 1969.
- ¹⁸⁾ W. R. Roush und H. R. Gillis, J. Org. Chem. 45, 4283 (1980); W. R. Roush und S. M. Pesckis, J. Am. Chem. Soc. 103, 6696 (1981); W. R. Roush, A. I. Ko und H. R. Gillis, J. Org. Chem. 45, 4264 (1980).
- ¹⁹⁾ W. R. Roush, H. R. Gillis und A. I. Ko, J. Am. Chem. Soc. 104, 2269 (1982).
- ²⁰⁾ Ausführliche Diskussion der Problematik siehe Lit.²⁾
- ²¹⁾ W. R. Roush, J. Am. Chem. Soc. 100, 3601 (1978); 102, 1390 (1980).
- ²²⁾ J. Sauer und R. Sustmann, Angew. Chem. 92, 773 (1980); Angew. Chem., Int. Ed. Engl. 19, 779 (1980).
- ²³⁾ C. Rücker, D. Lang, J. Sauer, H. Friege und R. Sustmann, Chem. Ber. 113, 1663 (1980).
- ²⁴⁾ W. Oppolzer, L. Fehr und J. Warneke, Helv. Chim. Acta 60, 48 (1977).
- ²⁵⁾ W. R. Roush und H. R. Gillis, J. Org. Chem. 47, 4825 (1982).
 ²⁶⁾ S. D. Burke, T. H. Powner und M. Kageyama, Tetrahedron Lett. 24, 4529 (1983); J. M. Hornback und R. D. Barrocos, J. Org. Chem. 48, 90 (1983); J. A. Marshall, J. E. Audia und J. Grote, ebenda 49, 5279 (1984).
- ²⁷⁾ M. P. Schneider und M. Goldbach, J. Am. Chem. Soc. 102, 6114 (1980).
- ²⁸ Der technische Sorbinaldehyd (Wacker-Chemie, Burghausen) besteht laut ¹H-NMR und GC aus (2E,4E)- und (2E,4Z)-2,4-Hexadienal 90:10 (=2a). In Analogie zu Lit.²⁹) liefert mehrmalige fraktionierte Kristallisation bei 30 bis 40 °C 2b mit 98% all-E-Anteil.
 ²⁹ P. Albriksten und R.K. Harris, Acta Chem. Scand. 27, 3993 (1973).
 ³⁰ W. Oppolzer, R. L. Snowden und D. P. Simmons, Helv. Chim. Acta 64, 2002 (1981).

- ³¹⁾ M. Cerny, Collect. Czech. Chem. Commun. 42, 3069 (1977).
- ³²⁾ T. K. Jones und S. E. Denmark, Helv. Chim. Acta 66, 2377, 2397 (1983).
- 33) S. A. Bal, H. Marfat und P. Helquist, J. Org. Chem. 47, 5045 (1982), und dort zitierte Literatur.

[49/86]